Meteorology of Jupiterâ€TMs equatorial hot spots and plumes from Cassini

نویسندگان

  • David S. Choi
  • Adam P. Showman
  • Ashwin R. Vasavada
  • Amy A. Simon-Miller
چکیده

We present an updated analysis of Jupiter’s equatorial meteorology from Cassini observations. For two months preceding the spacecraft’s closest approach, the Imaging Science Subsystem (ISS) onboard regularly imaged the atmosphere. We created time-lapse movies from this period in order to analyze the dynamics of equatorial hot spots and their interactions with adjacent latitudes. Hot spots are relatively cloud-free regions that emit strongly at 5 lm; improved knowledge of these features is crucial for fully understanding Galileo probe measurements taken during its descent through one. Hot spots are quasistable, rectangular dark areas on visible-wavelength images, with defined eastern edges that sharply contrast with surrounding clouds, but diffuse western edges serving as nebulous boundaries with adjacent equatorial plumes. Hot spots exhibit significant variations in size and shape over timescales of days and weeks. Some of these changes correspond with passing vortex systems from adjacent latitudes interacting with hot spots. Strong anticyclonic gyres present to the south and southeast of the dark areas appear to circulate into hot spots. Impressive, bright white plumes occupy spaces in between hot spots. Compact cirrus-like ‘scooter’ clouds flow rapidly through the plumes before disappearing within the dark areas. These clouds travel at 150–200 m s , much faster than the 100 m s 1 hot spot and plume drift speed. This raises the possibility that the scooter clouds may be more illustrative of the actual jet stream speed at these latitudes. Most previously published zonal wind profiles represent the drift speed of the hot spots at their latitude from pattern matching of the entire longitudinal image strip. If a downward branch of an equatorially-trapped Rossby wave controls the overall appearance of hot spots, however, the westward phase velocity of the wave leads to underestimates of the true jet stream speed. 2013 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical implications of Jupiter’s tropospheric ammonia abundance

Groundbased radio observations indicate that Jupiter’s ammonia is globally depleted from 0.6 bars to at least 4–6 bars relative to the deep abundance of ∼ 3 times solar, a fact that has so far defied explanation. The observations also indicate that (i) the depletion is greater in belts than zones, and (ii) the greatest depletion occurs within Jupiter’s local 5-μm hot spots, which have recently ...

متن کامل

Hot Spots and Mantle Plumes

Hot spots are anomalous areas of surface volcanism that cannot be directly associated with plate tectonic processes. The term hot spot is used rather loosely. It is often applied to any long-lived volcanic center that is not part of the global network of mid-ocean ridges and island arcs. The classic example is Hawaii. Anomalous regions of thick crust on ocean ridges are also considered to be ho...

متن کامل

Mantle plumes: Dynamic models and seismic images

[1] Different theories on the origin of hot spots have been debated for a long time by many authors from different fields, and global-scale seismic tomography is probably the most effective tool at our disposal to substantiate, modify, or abandon the mantle-plume hypothesis. We attempt to identify coherent, approximately vertical slow/hot anomalies in recently published maps of P and S velocity...

متن کامل

Not so hot "hot spots" in the oceanic mantle.

Excess volcanism and crustal swelling associated with hot spots are generally attributed to thermal plumes upwelling from the mantle. This concept has been tested in the portion of the Mid-Atlantic Ridge between 34 degrees and 45 degrees (Azores hot spot). Peridotite and basalt data indicate that the upper mantle in the hot spot has undergone a high degree of melting relative to the mantle else...

متن کامل

Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients

Hot spot volcanism may originate from the deep mantle in regions exhibiting the Earth’s most pronounced lateral S-wave velocity gradients. These strong gradient regions display an improved geographic correlation over S-wave velocities to surface hot spot locations. For the lowest velocities or strongest gradients occupying 10% of the surface area of the core–mantle boundary (CMB), hot spots are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014